Manual Micromanipulator

Order code

Popular manual micromanipulator

  • The most widely used micromanipulator
  • Lightweight 550 g
  • Sure, repeatable movement without drift
  • Choice of optional M-3 tilting base. 5464 5-lb weight for Tilting Base sold separately
    Thumbscrew included for metric anti-vibration platforms with M6 holes
  • 5464 Base Weight and 15873 Angled Electrode Holder sold separately
  • Comes installed with a 12 mm clamp for the M10 magnetic base


Order code Description
M3301R M3301 Micromanipulator
Right hand
M3301L M3301 Micromanipulator
Left hand
M3301-M3-R M3301 Micromanipulator
M3 Tilting Base
Right hand
5# weight not included
M3301-M3-L M3301 Micromanipulator
M3 Tilting Base
Left hand
5# weight not included


  • Control knobs clustered in 8 cm area in a single vertical plane for quick resolution
  • Right and left had orientation options available


  • Microinjection
  • Electrophysiology recording

Weighing just 550g and employing a slim space-saving design, this well-built manipulator outsells all others worldwide for high precision experiments where magnification is in the range of up to 250x. Its design allows units to stand tightly grouped - since all control knobs project to the rear. Because the control knobs are clustered within an 8 cm area in a single vertical plane, resolution is quick. The hand works blindly while the eye monitors the microscopic image. Vernier scales allow readings to 0.1 mm. X-axis fine control allows readings to 10μm.

The instrument employs rack-and-pinion drive, V-shaped guideways and cross roller bearings, so all movement is sure and repeatable, without drift, side play, backlash or sticking. Contact parts are milled of hardened steel for high performance and long life.

Left- or right-handed versions of the M3301 are supplied with:

  • standard 12mm clamp (M2)
  • one microelectrode holder (M3301EH).

With the M-3 magnetic stand, the M3301-M3 base is 1.25" tall.


The following images show various setups for microinjection. Keep in mind that parts are interchangeable. For example:

  • M10 or the M9 magnetic base could be used.
  • PZMIV microscope could be used instead of the PZMIII.
  • M3301 or the KITE micromanipulators can be used, and these micromanipulators can be placed on either side. (Keep in mind, though, If you wanted to use a KITE on the right side of the setup below, you would order a KITE-R (right hand), or if you want an M3301 on the left side, you would order an M3301.)
  • 5479 or 5052 magnetic bases are virtually interchangeable.
  • One or two Nanoliters, one or two UMPIII systems, or one Nanoliter and one UMPIII may be used, as desired.












  Travel Range Resolution
X-axis Fine 10 mm 0.01 mm
X-axis 37 mm 0.1 mm
Y-axis 20 mm 0.1 mm
Z-axis 25 mm 0.1 mm
Shipping Weight 3 lbs (1.4 kg)  

Whole-embryo culture of mouse embryos to study vascular development. (n.d.). Retrieved October 23, 2015, from

Evsen, L., & Doetzlhofer, A. (2016). Gene Transfer into the Chicken Auditory Organ by <em>In Ovo</em> Micro-electroporation. Journal of Visualized Experiments, (110), e53864–e53864.

Grossöhmichen, M., Salcher, R., Püschel, K., Lenarz, T., & Maier, H. (2016). Differential Intracochlear Sound Pressure Measurements in Human Temporal Bones with an Off-the-Shelf Sensor. BioMed Research International, 2016, 6059479.

Ito, Y. A., Belforte, N., Cueva Vargas, J. L., & Di Polo, A. (2016). A Magnetic Microbead Occlusion Model to Induce Ocular Hypertension-Dependent Glaucoma in Mice. Journal of Visualized Experiments, (109), e53731–e53731.

Grossöhmichen, M., Salcher, R., Kreipe, H.-H., Lenarz, T., & Maier, H. (2015). The CodacsTM Direct Acoustic Cochlear Implant Actuator: Exploring Alternative Stimulation Sites and Their Stimulation Efficiency. PLOS ONE, 10(3), e0119601.

Mobberley, J. M., Khodadad, C. L. M., Visscher, P. T., Reid, R. P., Hagan, P., & Foster, J. S. (2015). Inner workings of thrombolites: spatial gradients of metabolic activity as revealed by metatranscriptome profiling. Scientific Reports, 5, 12601.

Nesbit, S. C., Van Hoof, A. G., Le, C. C., Dearworth, J. R., & Jr. (2015). Extracellular Recording of Light Responses from Optic Nerve Fibers and the Caudal Photoreceptor in the Crayfish. Journal of Undergraduate Neuroscience Education : JUNE : A Publication of FUN, Faculty for Undergraduate Neuroscience, 14(1), A29-38. Retrieved from

Bouta, E. M., Wood, R. W., Brown, E. B., Rahimi, H., Ritchlin, C. T., & Schwarz, E. M. (2014). In vivo quantification of lymph viscosity and pressure in lymphatic vessels and draining lymph nodes of arthritic joints in mice. The Journal of Physiology, 592(6), 1213–1223.

Cornwall, C. E., Boyd, P. W., McGraw, C. M., Hepburn, C. D., Pilditch, C. A., Morris, J. N., … Hurd, C. L. (2014). Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa. PloS One, 9(5), e97235.

Shin, S.-H., Lee, S., Bae, J.-S., Jee, J.-G., Cha, H.-J., & Lee, Y. M. (2014). Thymosin beta4 regulates cardiac valve formation via endothelial-mesenchymal transformation in zebrafish embryos. Molecules and Cells, 37(4), 330–6.

Gharbaran, R., & Aisemberg, G. O. (2013). Identification of leech embryonic neurons that express a Hox gene required for the differentiation of a paired, segment-specific motor neuron. International Journal of Developmental Neuroscience : The Official Journal of the International Society for Developmental Neuroscience, 31(2), 105–15.

Loch, D., Heidel, C., Breer, H., & Strotmann, J. (2013). Adiponectin Enhances the Responsiveness of the Olfactory System. PLoS ONE, 8(10), e75716.

Luetje, C. W., Nichols, A. S., Castro, A., & Sherman, B. L. (2013). Functional assay of mammalian and insect olfactory receptors using Xenopus oocytes. Methods in Molecular Biology (Clifton, N.J.), 1003, 187–202.

Lyons-Warren, A. M., Kohashi, T., Mennerick, S., & Carlson, B. A. (2013). Retrograde Fluorescent Labeling Allows for Targeted Extracellular Single-unit Recording from Identified Neurons <em>In vivo</em> Journal of Visualized Experiments, (76), e3921–e3921.

Saha, D., Leong, K., Katta, N., & Raman, B. (2013). Multi-unit Recording Methods to Characterize Neural Activity in the Locust (<em>Schistocerca Americana</em>) Olfactory Circuits. Journal of Visualized Experiments, (71), e50139–e50139.

Saha, D., Leong, K., Katta, N., & Raman, B. (2013). Multi-unit recording methods to characterize neural activity in the locust (Schistocerca americana) olfactory circuits. Journal of Visualized Experiments : JoVE, (71).

Spencer, N. J. (2013). Characteristics of colonic migrating motor complexes in neuronal NOS (nNOS) knockout mice. Frontiers in Neuroscience, 7, 184.

Bryant, L. D., Little, J. C., & Bürgmann, H. (2012). Response of sediment microbial community structure in a freshwater reservoir to manipulations in oxygen availability. FEMS Microbiology Ecology, 80(1), 248–63.

Chernet, B. T., Adams, D. S., & Levin, M. (2012). Photoconversion for tracking the dynamics of cell movement in Xenopus laevis embryos. Cold Spring Harbor Protocols, 2012(6), 683–90.

Chernet, B. T., & Levin, M. (2012). A versatile protocol for mRNA electroporation of Xenopus laevis embryos. Cold Spring Harbor Protocols, 2012(4), 447–52.

Laude, N. D., Atcherley, C. W., & Heien, M. L. (2012). Rethinking data collection and signal processing. 1. Real-time oversampling filter for chemical measurements. Analytical Chemistry, 84(19), 8422–6.

Wang, Y., Shah, P., Phillips, C., Sims, C. E., & Allbritton, N. L. (2012). Trapping cells on a stretchable microwell array for single-cell analysis. Analytical and Bioanalytical Chemistry, 402(3), 1065–72.

Zeeb, M., Axnick, J., Planas-Paz, L., Hartmann, T., Strilic, B., & Lammert, E. (2012). Pharmacological manipulation of blood and lymphatic vascularization in ex vivo-cultured mouse embryos. Nature Protocols, 7(11), 1970–82.

Dong, Z., Wagle, M., & Guo, S. (2011). Time-lapse live imaging of clonally related neural progenitor cells in the developing zebrafish forebrain. Journal of Visualized Experiments : JoVE, (50).

Allen, M. J., & Godenschwege, T. A. (2010). Electrophysiological recordings from the Drosophila giant fiber system (GFS). Cold Spring Harbor Protocols, 2010(7), pdb.prot5453. Retrieved from

Cianciolo Cosentino, C., Roman, B. L., Drummond, I. A., & Hukriede, N. A. (2010). Intravenous Microinjections of Zebrafish Larvae to Study Acute Kidney Injury. Journal of Visualized Experiments, (42), e2079–e2079.

Cygnar, K. D., Stephan, A. B., & Zhao, H. (2010). Analyzing Responses of Mouse Olfactory Sensory Neurons Using the Air-phase Electroolfactogram Recording. Journal of Visualized Experiments, (37), e1850–e1850.

Kulesa, P. M., Teddy, J. M., Smith, M., Alexander, R., Cooper, C. H., Lansford, R., & McLennan, R. (2010). Multispectral fingerprinting for improved in vivo cell dynamics analysis. BMC Developmental Biology, 10(1), 101.

Seidl, A. H., & Rubel, E. W. (2010). A simple method for multiday imaging of slice cultures. Microscopy Research and Technique, 73(1), 37–44.

Kasri, N. N., Govek, E.-E., & Van Aelst, L. (2008). Characterization of oligophrenin-1, a RhoGAP lost in patients affected with mental retardation: lentiviral injection in organotypic brain slice cultures. Methods in Enzymology, 439, 255–66.

Kasri, N. N., Govek, E.-E., & Van Aelst, L. (2008). Small GTPases in Disease, Part B. Methods in enzymology (Vol. 439). Elsevier.

Rumpler, M., Woesz, A., Dunlop, J. W. ., van Dongen, J. T., & Fratzl, P. (2008). The effect of geometry on three-dimensional tissue growth. Journal of The Royal Society Interface, 5(27), 1173–1180.

Fleisch, V. C., Jametti, T., & Neuhauss, S. C. F. (2008). Electroretinogram (ERG) Measurements in Larval Zebrafish. CSH Protocols, 2008(3), pdb.prot4973.

Kasemeier-Kulesa, J. C., Bradley, R., Pasquale, E. B., Lefcort, F., & Kulesa, P. M. (2006). Eph/ephrins and N-cadherin coordinate to control the pattern of sympathetic ganglia. Development (Cambridge, England), 133(24), 4839–47.

Spencer, N. J., & Smith, T. K. (2004). Mechanosensory S-neurons rather than AH-neurons appear to generate a rhythmic motor pattern in guinea-pig distal colon. The Journal of Physiology, 558(2), 577–596.

Padnick, L. B., & Linsenmeier, R. A. (1999). Properties of the flash visual evoked potential recorded in the cat primary visual cortex. Vision Research, 39(17), 2833–40. Retrieved from

Oemar, B. S., Tschudi, M. R., Godoy, N., Brovkovich, V., Malinski, T., & Lüscher, T. F. (1998). Reduced Endothelial Nitric Oxide Synthase Expression and Production in Human Atherosclerosis. Circulation, 97(25).

More Choices:
  1. Axis Adjustment Tool
    Axis Adjustment Tool
  2. Angled Electrode Holder
    Angled Electrode Holder
  3. Steel Base Plate, 10 lbs
    Steel Base Plate, 10 lbs
  4. Base Weight
    Base Weight
  5. Steel Base Plate, 32 lbs
    Steel Base Plate, 32 lbs
  6. M10 Magnetic Stand
    M10 Magnetic Stand
  7. Magnetic Stand Rotatable
    Magnetic Stand Rotatable
  8. M10L Magnetic Stand
    M10L Magnetic Stand
  9. Tilting Base, 5.1"x 0.25"x 2.3"
    Tilting Base, 5.1"x 0.25"x 2.3"
  10. Replacement Electrode Holder
    Replacement Electrode Holder
  11. Magnetic Stand - Compact
    Magnetic Stand - Compact
  12. Magnetic Stand - Flexible
    Magnetic Stand - Flexible
©Copyright 2020. World Precision Instruments. All rights reserved.

Apply for Tax Exempt Status
WPI collects tax in AL, AZ, CA, CO, CT, DC, FL, GA, IL, IN, MA, ME, MD, MI, MN, MO, NC, NV, NJ, NY, OH, OK, PA, SC, TN, TX, VA, VT, WA and WI